
four ‘maximally entangled Bell states’, shown
in Fig. 1. Such Bell states have the paradoxical
property that the particles always ‘know’
about each other, even if they are separated by
huge distances5; this property is commonly
associated with the ‘non-locality’ of quan-
tum mechanics. Entanglement such as this is
a basic ingredient of quantum computation
(Fig. 2) and hence is no longer just a toy for
laboratory science6,7 but also a tool for the
technological world. But how can specific
entangled states be constructed on demand? 

For a deterministic entanglement of 
two quantum degrees of freedom, the two 
constituents must interact in a controlled
manner. This has already been achieved in
atomic optics, by manipulating a pair of
trapped beryllium atoms using a sequence of
laser pulses8. But now the solid-state camp is
catching up: Pashkin et al.4 have brought two
superconducting qubits into a controlled
state of interaction.

These qubits encode information using
charge rather than spin. In a superconductor,
charge is carried by pairs of electrons, known
as Cooper pairs. In Pashkin and colleagues’
experiment, the qubits are micrometre-size
specks of superconductor, each connected to
a superconducting ‘reservoir’. By quantum
mechanical tunnelling, a Cooper pair might
jump from the reservoir onto a qubit. Then,
analogous to the spin ‘up’ and ‘down’ states,
the qubit can be in a state with no excess
Cooper pairs, or one excess Cooper pair —
or a superposed state of both. The super-
conducting energy gap, which is a natural
barrier against the dissociation of Cooper
pairs, protects these solid-state qubits from
decoherence. 

Using lithography and evaporation tech-
niques, Pashkin et al. fabricated two qubits
on an insulating wafer, connected through a
capacitor (see Fig. 1 on page 824). Each qubit
coupling to the superconducting reservoir
(called a Josephson junction) results in a
mixing between the charge states of that
qubit, and the capacitive connection
between the qubits leads to the mixing of
two-particle states, and hence entanglement
of the qubit pair. Following the principle
demonstrated by Nakamura et al.9 for a single
qubit, Pashkin et al.4 trace the evolution of
the mixing of these two-particle states over

time, monitoring the charge oscillations
produced with a current probe. 

Although they have not yet been able to
create and measure a specific entangled state,
a numerical analysis shows that the qubit
pair does evolve through a maximally entan-
gled state, bringing us closer to the construc-
tion of a solid-state quantum logic gate to
produce deterministic entanglement. The
next step could be to introduce time-
controlled switching of the interaction and
subsequent readout, measuring the degree of

entanglement through the amplitudes of the
final state expressed in the Bell-state basis10.

Astounding progress has been made over
the past few years in the experimental devel-
opment of quantum computing. In quan-
tum atom optics, entanglement of four par-
ticles has been achieved11 and entangled ions
are being used to test quantum mechanical
relations known as Bell’s inequalities12.
Shor’s factorization algorithm has been
implemented13 with a seven-qubit molecule
using NMR techniques, successfully identi-
fying the factors of 15 as 3 and 5. From their
first appearance a few years ago9,14,15, super-
conducting qubits have already matured into
effective and efficient devices16,17, and now
Pashkin et al.4 have demonstrated the first
step towards their deterministic entangle-
ment. These are firm foundations for the
development of a solid-state quantum
processor, but considerable effort will be
needed to direct the complex choreography
of a real quantum algorithm. ■
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Learning something new — and recalling
what you’ve learned — involves large
numbers of nerve cells, distributed

throughout different parts of the brain. 
Neuronal assemblies in the hippocampus,
for instance, are thought to be essential 
in encoding, consolidating and retrieving
memories. These neuronal networks alter-
nate between several functional states, each
characterized by a temporally structured

pattern of electrical activity that may facili-
tate a particular aspect of memory process-
ing. On page 844 of this issue, Klausberger 
et al.1 present results that bring us closer 
to understanding the precise but varied ways
in which distinct classes of hippocampal
neurons impose such network states. Their
study focuses on interneurons — small 
neurons that are involved in the local pro-
cessing of nerve signals. They find that these
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Neurobiology

Interneurons take charge
Edvard I. Moser

The brain’s hippocampal region contains many classes of interneurons,
which, it transpires, show different patterns of activity. They might
contribute to memory by shaping the dynamics of neuronal networks.
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Figure 1 Bell states for a two-particle system. 
The arrows represent the spin state of each
particle (coded red and blue), which may be
either ‘up’ or ‘down’.

+

–
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H
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Hadamard

Controlled NOT

Entanglement

Figure 2 Quantum logic. The quantum state of
an individual qubit is described as a complex
superposition of two basis states, here denoted
by ↑ $ and ↓ $ . a, Acting on a single qubit, the
operation known as ‘Hadamard’ transforms
↑ $ or ↓ $ into the symmetric or
antisymmetric superpositions [↑ $5 ↓ $]. 
b, Adding one non-trivial two-qubit operation 
to the set of single-qubit rotations defines a
complete and universal set of gate operations.
The operation ‘Controlled NOT’ flips the target
spin (red) if the control spin (blue) points
downwards (or else leaves the target
unchanged). c, Two-qubit states are complex
superpositions of the four basis states ↑ ↑ $ ,
↓↓ $ , ↑ ↓ $ and ↓↑ $ . Applying the two
operations ‘Hadamard’ and ‘Controlled NOT’ to
one of the two-qubit basis states produces a
maximally entangled Bell state.
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cells, which generally have inhibitory 
activities, seem to work together in a strictly
coordinated manner to control assemblies 
of excitatory pyramidal nerve cells.

In particular, the new results1 show that
the dynamics of hippocampal networks are
related to the diversity in the hippocampal
interneuron population. Pyramidal cells are
relatively uniform in their structure and
behaviour. But interneurons form distinct
classes, in terms of their shape, the inputs to
which they respond, the other neuron popu-
lations they connect to, and the specific parts
of neurons with which they make contact2–4.
Klausberger et al. now show that morpho-
logically distinct classes of hippocampal
interneurons also contribute differently to
network states.

The authors recorded the electrical
impulses (spikes) generated by three types of
hippocampal interneurons — basket cells,
axo-axonic cells, and oriens–lacunosum-
moleculare (O-LM) cells — during two 
network states in anaesthetized rats. One of
these states is characterized by theta oscilla-
tions (which have a frequency of 4–10 Hz),
the other by short ripple oscillations
(120–200 Hz) on a background of more
irregular activity. In conscious animals, theta
oscillations are associated with movement
and exploration, whereas ripples are associ-
ated with inactivity and slow-wave sleep5.

The three classes of interneurons 
exhibited distinct, state-dependent patterns
of activity (Fig. 1). For instance, during
theta oscillations, basket cells fired on the
descending phase of each wave, axo-axonic
cells just after the peak, and O-LM inter-
neurons at the trough. During ripple 
oscillations, basket cells discharged one 
or more phase-locked spikes; axo-axonic

cells fired at the beginning of each ripple
sequence; and O-LM cells became totally
silent. The implication is that the three 
classes of interneurons, through their 
characteristic patterns of activity, make 
specific contributions to the production of
hippocampal network states.

It remains to be seen, however, exactly
what these contributions are. For example,
what is the function of the sudden drop in
activity of O-LM cells during ripple oscilla-
tions? As interneurons generally inhibit
other nerve cells, this drop in activity means
a drop in inhibition. Axons from O-LM 
cells target the outermost portion of 
pyramidal-cell dendrites — the area in
which pyramidal cells receive excitatory
inputs from another brain region, the
entorhinal cortex, which mediates highly
processed sensory information to the hippo-
campus. So does the drop in inhibition
amplify the cortical input? Does it enable the
excitatory synapses (connections) between
entorhinal cells and hippocampal cells to
become modified, and do such changes
occur specifically during ripple oscillations?
During ripples, pyramidal cells tend to fire
in patterns that are reminiscent of their 
firing during recent awake behaviour6. Such
‘reactivation’ may contribute to memory
consolidation in the hippocampus and the
neocortex6, where the permanent storage 
of memories is thought to take place7. Are
O-LM cells involved in this process?

Moreover, what is the function of the 
precisely timed firing of basket cells and 
axo-axonic cells during ripple and theta
oscillations? Does it synchronize the output
from hippocampal pyramidal cells to the
neocortex8? And, if so, how do the neocortical
target neurons respond to such output? 

To determine how the interneurons’ 
precise control of network dynamics con-
tributes to hippocampal functions such as
memory processing9, the analysis must be
extended to behavioural studies in con-
scious animals. Functional diversity in the
hippocampal networks of conscious rats was
first studied 30 years ago10, when nerve
impulses recorded in the hippocampus 
were observed to originate from either ‘com-
plex-spike cells’ or ‘theta cells’. The complex-
spike cells discharged at low rates but in
bursts; theta cells were more active but 
their spikes were also more dispersed. These 
two types of neurons had the properties
expected of pyramidal cells and inter-
neurons, respectively. Their identity was
eventually verified by staining the recorded
neurons in anaesthetized rats11; this con-
firmed that spike parameters and spike 
patterns can indeed predict the morphology
of hippocampal neurons.

The results of Klausberger et al.1 show
that a similar approach can be used to 
distinguish between classes of interneurons.
The spike activity generated by interneurons
in a given class varies little, suggesting that
state-dependent activity patterns provide
valid signatures of basket cells, axo-axonic
cells and O-LM cells in anaesthetized rats.
Can these differences be extrapolated to
awake animals? Similar profiles of activity
have been observed during corresponding
network states in anatomically unidentified
hippocampal interneurons in conscious
rats12. Obviously, there are differences
between the awake and anaesthetized condi-
tions13, but the new results represent a first
step towards a physiological classification
scheme that could be used to relate varia-
tions in activity profiles to particular
interneurons and to specific memory 
operations14.

For these results to be applied to behav-
ioural studies, other types of hippocampal
interneurons must be analysed in a similar
way. The criteria that distinguish between
basket cells, axo-axonic cells and O-LM cells
in the study by Klausberger et al.might be less
useful in samples that also contain other
interneuron classes. It may be necessary to
explore additional parameters, such as wave-
form shape — which is known to distinguish
pyramidal cells from some interneurons10,11

— as well as other network states and the
cells’ responses to specific drugs.

A physiologically based classification 
system for analysing behaviour represents
one of two developments that should
advance our understanding of hippocampal
interneurons. The other is the genetic
manipulation of mice, which may soon allow
scientists to examine neuronal networks and
memory processes when the function of 
particular interneurons has been genetically
altered. Together, these new tools have the
power to uncover the most fundamental
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Basket cell

Axo-axonic cell

O-LM cell

Theta oscillations
(movement, exploration, REM sleep)

Ripple oscillations
(slow-wave sleep, rest)

Figure 1 Interneurons and electrical oscillations. The figure shows the activity profiles of three 
types of hippocampal interneuron during two brain states, based on the findings of Klausberger 
et al.1. Colours indicate the probability that a given interneuron will fire (maximum red, minimum
blue). During theta oscillations, basket cells fire on the descending phase of local theta waves, 
axo-axonic cells fire just after the peak, and O-LM cells fire at the trough. During ripple 
oscillations, basket cells discharge one or several phase-locked spikes, axo-axonic cells fire only 
at the beginning of the ripple sequence, and O-LM cells become silent. The variation within each 
group is small, suggesting that classes of interneurons exert precise control over distinct aspects 
of hippocampal network dynamics.
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In work published in Proceedings of the
Royal Society, Mary Myerscough1 has
taken a novel approach to the modelling 

of group decision-making by honeybee
swarms when they are in search of a new
home. Bees ‘waggle dance’ to communicate
locations of food in foraging, and of poten-
tial nest sites when a colony moves during
swarming. Myerscough treats the scout bees
dancing for alternative sites as populations,
and models their growth and extinction with
the tools of mathematical ecology. From this
approach it is evident how a slight difference
in the way the dance-language ‘recruitment’
of other bees is structured in foraging and
house-hunting influences the outcome of
each process. 

The choice of a new home site by a swarm
of honeybees is a striking example of group
decision-making. When a swarm clusters
after leaving its natal colony (Fig. 1), scouts
search the countryside for cavities with the
appropriate volume and other characteristics2.
They then return to the swarm, and com-
municate the distance to and direction of
the sites that they have found with waggle
dances3, just like those used for communi-
cating locations of food sources in
foraging4. Usually, the scouts find and
report several sites, but in time dances cease
for all but one of them, and finally the
swarm flies to the selected cavity. Self-
organizing processes such as this, in which 
a complex higher-order pattern (here, the
development of a consensus on the best 
site) arises from relatively simple responses
of individuals with no global view of the 
situation, are receiving increasing attention
as biological mechanisms for elaborating
complexity5.

The population-biology metaphor is
appropriate for analysing honeybee dance
information. Bees recruited by dances for 

a particular site may visit it and in turn 
dance for new recruits, so dances reproduce.
But nest-site scouts may cease dancing
before they recruit at least one other dancer:
the population of dancers for that site 
then declines, and may become extinct.
Myerscough’s approach incorporates key
aspects of the dynamics of nest-site recruit-
ment, and can accommodate differences that
are specific to the nest site or the individual
bee. The populations of dancers have ‘age
structure’ in the sense that some dances are a
scout’s first dance for a nest site, others follow
a second trip, and so on. This is similar to
population growth with discrete genera-
tions, which can be represented in a standard
tool of mathematical ecology: a Leslie
matrix. The ‘age structure’ patterns also can
incorporate an important difference in
dance language use between nectar foraging
and house-hunting. In foraging, the number
of waggle runs that a bee performs when
returning with food increases and then 
levels off with successive dances by that bee
(Fig. 2a). In contrast, in house-hunting, 
the number of waggle runs (which initially
depends on the quality of the site) generally
declines with each successive dance (Fig. 2b),

and each scout soon ceases dancing entirely.
This gives different patterns of ‘age-specific
fecundity’ to the dancing bee populations.

Because the mathematical theory of 
models of this type is well developed, 
Myerscough’s approach has an analytical pay-
off. It is straightforward to predict whether a
population of dancers for a site will increase or
decline. But this is a dynamic process, because
only a limited number of scouts can be
recruited. As a result, whether dancers for a
particular site increase or decrease in number
depends both on the quality of the site and on
the populations of other dancers. The dancing
for a site may increase while competing
dances are rare, but then decline in favour of
other sites with greater ‘fecundity’ (that is,
those that elicit a greater number of waggle
runs of dancing per trip by scouts). Such
dynamics are typical of swarms3,6,7, with the
outcome that the highest-quality site among
those discovered is usually selected8.

The most striking result of this approach
is that it shows how certain special features 
of the dance in the context of house-hunting
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principles of memory formation in the 
neuronal assemblies of the hippocampus. ■
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Animal behaviour

How self-organization evolves
P. Kirk Visscher

Self-organized systems can evolve by small parameter shifts that produce
large changes in outcome. Concepts from mathematical ecology show
how the way swarming bees dance helps to achieve unanimous decisions.

Figure 1 Honeybee swarm in search of a 
new nest site.
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Figure 2 Different patterns of dance-language
performance in nectar foragers and nest-site
scouts. These graphs plot the number of waggle
runs in the recruitment dances performed after
each return trip to the colony for successive
instances where each individual bee danced10. 
a, Nectar foragers continue to dance for many
trips. (Here, 93% of 40 foraging bees in 3
colonies danced on more than 8 trips; most
danced on more than 50 trips.) b, Nest-site
scouts, searching for a new home following
swarming, perform dances with more waggle
runs at first, but soon cease to dance entirely.
(Here, fewer than 5% of 86 bees in 3 swarms
performed more than 8 dances.) Myerscough’s
analysis1 suggests that this difference in dance
performance underlies the difference in
outcome: in foraging, it is desirable to recruit
new foragers for several sites; in swarming,
unanimity for a single site must be reached.
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